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Abstract. The electronic structure of ZrZn2 is calculated by a self-consistent linear muffin-tin
orbital method within the atomic sphere approximation. From fixed-spin-moment calculations the
magnetic moment M is estimated as a function of magnetic field H . By fitting the calculated values
of M(H) to the form H = aM +bM3 +cM5 +dM7 +eM9, the coefficients a, b, c, d, e are estimated
as functions of the lattice constant. It is shown that the values of a and b are negative and positive,
respectively, at the observed lattice constant at ambient pressure. With decreasing lattice constant
the value of a changes its sign from negative to positive, which means that the ferromagnetic state is
unstable. At a lattice constant a little smaller than the critical one, the value of b also changes its sign
from positive to negative. These results, together with the other coefficients c–e, indicate a broad
maximum in the temperature dependence of the susceptibility when the effect of spin fluctuations
is taken into account. However, the absolute value of b is so small that the metamagnetic transition
does not occur. It is shown that the anomalous temperature dependence of the susceptibility of
ZrZn2 observed recently at high pressure is well described by the present calculations.

1. Introduction

It is well known that ZrZn2 with cubic Laves phase structure is a weak ferromagnet in an
itinerant-electron system. The magnetic moment is about 0.1–0.2 µB per molecule at low
temperature and the Curie temperature TC is 20–30 K. The observed linear Arrott plots [1]
of M2 against H/M , where M and H are the bulk moment and magnetic field, indicate
that this compound is a typical example described by the Landau theory [2]. By means of
polarized neutron scattering measurements, a large degree of delocalization of Zr spin density
was observed in ZrZn2 [3]. The magnetization at low field varies as T 2 and a strong field
dependence of the magnetization was observed even at low temperature. The susceptibility
above TC obeys the Curie–Weiss law. These results are well described by the spin-fluctuation
theory given by Moriya [4] and Lonzarich and Taillefer [5].

Recent experimental results, however, show that ZrZn2 and MnSi are not simple itinerant-
electron magnets at high pressures where the magnetic phase transition takes place. As
predicted by the spin-fluctuation theory [4,5], TC decreases as (pC − p)3/4 with increasing p,
where pC is the critical pressure [6–8]. However, above pC a maximum in the temperature
dependence of the susceptibility was observed for ZrZn2 [6] and MnSi [7,8]. No evidence for a
first-order transition was observed for ZrZn2 near pC. On the other hand, a clear metamagnetic
transition (MT) from the paramagnetic to the magnetic (conical spin) state was observed for
MnSi under high pressure [7–9]. The observed electric resistivities ρ for ZrZn2 and MnSi do
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not show a T 2-dependence but show a non-Fermi-liquid-like form ∝T 1.6 associated with the
quantum phase transition near pC [6, 7, 10]. In fact, the self-consistently renormalized theory
of spin fluctuations gives ρ ∝ T 5/3 near TC [11].

Yamada and Terao [12] have recently discussed the anomalous magnetic properties of
MnSi at high pressure; they performed band-structure calculations for some lattice constants
in a self-consistent linear muffin-tin orbital (LMTO) method within the atomic sphere
approximation (ASA). They have found that the Landau coefficient a of M2 in the magnetic
energy �E(M) increases with increasing lattice constant and changes its sign from negative
to positive. The coefficient b of M4 in �E(M) is negative and large. They have shown
that the MT may occur for MnSi at a lattice constant where the coefficient a is positive and
small and b is negative. A susceptibility maximum was also explained by their calculated
results when the effect of spin fluctuations was taken into account. This is just the itinerant-
electron metamagnetism [13], similar to that observed for YCo2 and Co(S, Se)2 at ambient
pressure [14, 15]. However, it is not clear why the MT occurs for MnSi but does not occur
for ZrZn2.

In the present paper, similar calculations to those in [12] are carried out for ZrZn2 to
study the susceptibility-maximum phenomenon and the possibility of the MT. In section 2,
the magnetic moment is obtained from a spin-polarized band calculation at various lattice
constants. The pressure dependence of the magnetic moment is discussed. In section 3, fixed-
spin-moment (FSM) calculations are carried out and the magnetization curve is obtained at
various lattice constants. It is shown that there is no possibility of a MT for ZrZn2 even at
small lattice constants. Taking into account the effect of spin fluctuations, the susceptibility
maximum observed for ZrZn2 at high pressure is also discussed. Our conclusions and a
discussion are given in section 4.

2. Calculation of the magnetic moment

The electronic structure of ZrZn2 with cubic Laves phase structure is calculated using a self-
consistent LMTO-ASA based on the local density functional approximation with the exchange–
correlation potential given by von Barth and Hedin [16]. The unit cell contains two Zr and
four Zn atoms. The ratio between the radii of atomic spheres for Zr at 8a sites and Zn at
16d sites is chosen to be

√
3/2, which is the value determined from the radii of touching

rigid spheres. Self-consistent calculations are carried out at 328 k-points in the irreducible
1/48 Brillouin zone. Compared with the case for previous calculations for ZrZn2 [17–19],
the present number of sampling k-points is very large; thus a higher accuracy of numerical
calculations is obtained. The basis set with angular momenta up to l = 3 is adopted for both
Zr and Zn atoms.

Figure 1 shows the calculated results for the local density-of-states (DOS) curves for Zr
and Zn in the non-magnetic state at the observed lattice constant 7.40 Å at ambient pressure.
The shape of the DOS and the position of the Fermi level EF are very similar to those calculated
previously [18, 19]. It is clearly seen that EF lies at a shoulder of the sharp peak of the DOS.
The dominant character near EF is that of 4d states of Zr mixed mainly with 4p states of Zn.
The height of the total DOS at EF, D(EF), is 69.0 states Ryd−1/molecule, which is almost
the same as that calculated in [18, 19] and rather smaller than 220 states Ryd−1/molecule
estimated from the observed low-temperature specific heat coefficient [20]. The difference
between the calculated and observed values is attributable to the electron–phonon interaction
and to the effect of spin fluctuations. The calculated value of D(EF) is a little higher than that
estimated from the Stoner criterion ID(EF) > 1, where I is the exchange–correlation integral
as discussed below.
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Figure 1. Local DOS curves for Zr and
Zn for paramagnetic ZrZn2 calculated at
the observed lattice constant 7.40 Å. EF
denotes the Fermi level.

From spin-polarized band calculations, the ferromagnetic moment is obtained at lattice
constants larger than 7.36 Å where the ferromagnetic state becomes stable. In figure 2 the
local DOS curves of the majority- and minority-spin bands calculated at the lattice constant
7.46 Å are shown. In figure 3 the calculated magnetic moment M is plotted as a function of
the lattice constant. An observed moment of about 0.15 µB/molecule is obtained at 7.44 Å,
which is a little larger than the observed lattice constant 7.40 Å. The broken curve in figure 3 is
plotted by assuming M ∝ √

a − aC near aC, where a is the lattice constant and aC = 7.36 Å.
We can see a strong dependence of M on the lattice constant. A strong pressure dependence of
the magnetic moment was actually observed in [21]. The value of d ln M/d ln V is estimated
as 26.4 from figure 3 between 7.42 and 7.46 Å; this is rather large compared to those for other
ferromagnetic materials—e.g., d ln M/d ln V = 16 for MnSi [9]. The value of d ln M/dp,
estimated by assuming the same value for the compressibility of ZrZn2 as that of MnSi, is
1.9 × 10−2 kbar−1, which is smaller than the observed one, 4.4 × 10−2 kbar−1 [21]. It is
noted that the observed magnetic moment and Curie temperature of ZrZn2 are very sensitive
to impurities and stress. For instance, the observed value of pC [21] is very different from that
in [6, 22].

Figure 2. The local DOS of Zr and Zn for
ferromagnetic ZrZn2 calculated at 7.46 Å.
EF denotes the Fermi level.
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Figure 3. Calculated magnetic moments
(closed circles) as functions of the lattice
constant.

3. FSM calculations and the susceptibility maximum

The FSM calculations [23,24] are carried out in the following way. The numbers of electrons
with majority and minority spins, N+ and N−, are given by (N +M)/2 and (N −M)/2 where N

and M are the total number of valence electrons and the spin moment divided by µB. Under the
constraint of fixed values of N+ and N−, the electron densities n+(r), n−(r) and the potentials
for electrons can be calculated by using the usual Kohn–Sham self-consistent equations, which
give two Fermi levels µ+ and µ− in the majority- and minority-spin bands, respectively.
For an arbitrary M , the system is not in the equilibrium state, so µ+ �= µ−. However, the
constrained state becomes an equilibrium at the magnetic field H = (µ+ − µ−)/2µB, as
∂ �E(M)/∂M = H and ∂ �E(M)/∂N± = µ±. This means that the state with the given M

is stabilized at this H . That is, M is obtained as a function of H .
The closed and open circles in figure 4 denote µ+ and µ−, respectively, calculated at the

observed lattice constant 7.40 Å. The two curves for µ+ and µ− intersect with each other at
about M = 0.068 µB per molecule. At this value of M , the value of H which stabilizes the
state becomes zero. That is, the value of M gives the spontaneous spin moment. The spin
moment calculated at the present lattice constant is about half of the observed value 0.15 µB per
molecule [1]. As mentioned above, the observed value was obtained at a slightly larger lattice

Figure 4. Fermi levels µ+ (closed circles)
and µ− (open circles) in the majority-
and minority-spin bands, respectively,
calculated at the observed lattice constant
7.40 Å.
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constant of about 7.44 Å. Moroni et al [25] have performed fixed-spin-moment calculations
for ZrZn2 at the lattice constants 7.62 and 7.30 Å. The total energy �E(M) relative to the
reference energy at M = 0 was found to be very flat in the region of small M . Thus it was
very hard to estimate an accurate value of M from the minimum of the calculated �E(M),
even at the larger lattice constant 7.62 Å.

The symbols in figure 5 show the magnetization curves M(H) estimated at certain
values of the lattice constant by using the calculated values of µ+ and µ− and the relation
H = (µ+ − µ−)/2µB. By the least-mean-squares method, the calculated values of H/M as a
function of M2 (Arrott plots) are fitted, in the range of M < 0.12 µB/molecule, very well by
the form

H

M
= a + bM2 + cM4 + dM6 + eM8. (1)

The thin broken curves in figure 5 are plotted by using these estimated values of the coefficients
a, b, c, d and e. The region of negative fields has no physical meaning. Metamagnetic behaviour
of M(H) cannot be seen for any lattice constant, although it can be seen that M(H) bends
upward at smaller lattice constants.

Figure 5. Calculated magnetization curves at the lattice constants 7.40, 7.38, 7.36, 7.34, 7.32,
7.30 and 7.28 Å shown by closed and open circles, closed and open squares, closed and open
triangles and closed diamonds, respectively. The thin broken curves are those calculated by using
a–e estimated in the text.

The estimated values of the coefficients a, b, c, d, e in (1) are plotted in figure 6 as functions
of the lattice constant. It is found that the coefficient a increases with decreasing lattice constant
and changes its sign from negative to positive at 7.36 Å, which indicates the collapse of the
ferromagnetic state. As mentioned in section 1, such an instability of the ferromagnetic state
was actually observed at the pressures 8 kbar [6, 22] and 18 kbar [21]. From the values of a

and D(EF) obtained at the observed lattice constant 7.40 Å, the Stoner factor S (=1 − Iχ0)
is estimated as −0.076, where χ0 is the non-interacting susceptibility obtained from D(EF).
Therefore, the Stoner condition S � 0 for the appearance of the ferromagnetic moment is
satisfied at this lattice constant. In figure 7, the calculated values of the total DOS D(EF) at EF

and the Stoner factor S are plotted as functions of the lattice constant. On the other hand, the
coefficient b decreases with decreasing lattice constant and changes its sign at about 7.33 Å.
The other coefficients c, d and e also change their signs near these lattice constants.
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Figure 6. Estimated values of the coefficients a in T µ−1
B /cell, b in T µ−3

B /cell3, c in T µ−5
B /cell5,

d in T µ−7
B /cell7 and e in T µ−9

B /cell9.

Figure 7. The total DOS D(EF) at EF in states Ryd−1/(molecule spin) and the Stoner factor S as
functions of the lattice constant.

On taking into account the effect of spin fluctuations, the inverse of the spin susceptibility
χ(T )−1 is given by

χ(T )−1 = a +
5

3
bξ(T )2 +

35

9
cξ(T )4 +

35

3
dξ(T )6 +

385

9
eξ(T )8 (2)

where ξ(T )2 is the mean square amplitude of the spin fluctuations. Details of the derivation
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of equation (2) are given in [12, 13]. Here, we assumed that the temperature dependence of
χ(T ) comes from that of ξ(T ) and that the coefficients a–e in equation (1) do not depend
on temperature. This is fairly reasonable because the main temperature dependence of χ(T )

comes from thermal spin fluctuations [4, 5].
When a > 0 and b < 0, the susceptibility shows a maximum in its temperature

dependence [13]. This is seen in the case for lattice constants smaller than 7.33 Å. The
susceptibility maximum χ(Tmax) is obtained from ∂χ(T )−1/∂ξ(T )2 = 0, as ξ(T )2 is known
to be a monotonically increasing function of temperature [4, 5]. The estimated values of
χ(Tmax)/χ(0) and ξ(Tmax) are shown in figure 8. The observed values of χ(Tmax)/χ(0) at
high pressures are, in fact, smaller than 1.3 [6]. The observed value of Tmax seems to shift to
high temperature with increasing pressure [6], which is consistent with the present calculations
of ξ(Tmax).

Figure 8. Calculated results for χ(Tmax)/χ(0) (closed circles) and ξ(Tmax) in µB/molecule (open
circles) as functions of the lattice constant.

4. Conclusions and discussion

In the present paper, the electronic structures of ZrZn2 were calculated by using a self-consistent
LMTO-ASA. From fixed-spin-moment calculations, the magnetic moment M is estimated as a
function of magnetic field H for some lattice constants. From the calculated values of M(H),
the expansion coefficients a, b, c, d , e in equation (1) were estimated as functions of the lattice
constant. It has been found that the values of a and b are negative and positive, respectively, at
the observed lattice constant at ambient pressure. With decreasing lattice constant, the value
of a changes its sign from negative to positive. At a lattice constant a little smaller than the
critical one where a = 0, the value of b was also found to change its sign from positive to
negative.

In order to see why the coefficients a and b change their signs with decreasing lattice
constant, the local DOS curves near EF in the non-magnetic state, calculated at the lattice
constants 7.30 and 7.40 Å, are shown in figure 9. It is clearly seen that the sharp peak of the
local DOS of Zr shifts toward the higher-energy side with decreasing lattice constant. The
position of EF moves out of the sharp peak of the DOS and comes into the region where a > 0
and b < 0. It has been explicitly shown in this paper that these results, together with the other
coefficients c–e, indicate a broad maximum in the temperature dependence of the susceptibility
at smaller lattice constants when the effect of spin fluctuations is taken into account. Moreover,



5878 H Morozumi et al

Figure 9. Local DOS curves in the
non-magnetic state calculated at 7.30 and
7.40 Å, shown by solid and broken curves,
respectively. EF denotes the Fermi level.

it has been shown that the MT does not occur for ZrZn2 at any lattice constant, as the absolute
value of b is so small. In this way the susceptibility maximum and the lack of evidence of the
MT observed for ZrZn2 have been shown to be well explained by the present calculations.
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